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ABSTRACT 

In the costtable approach to logic design, a given 
function is realized by selecting functions from a table and 
combining them. Associated with each function is a cost, 
and the goal is to find, among all realizations, the one of 
least cost. We show an extension to the costtable 
approach in which functions are combined using a multi- 
plexer, with the goal to find an arrangement of the func- 
tions that yields the lowest cost. Specifically, we analyze 
two techniques to minimize total function cost 1) choosing 
which variables to apply to the multiplexer inputs and 2) 
choosing a permutation of logic values that yields lowest 
cost. We analyze the relative benefits of l), 2), and 1) 
and 2) together. Our basis of comparison is a set of ran- 
domly chosen two- and three-variable 4-valued functions. 
We show that these techniques yield a reduction of 7 to 
34% in the average cost over the use of a multiplexer 
without such techniques. 

I. INTRODUCTION 

Because of compactness of logic circuits, there is con- 
siderable interest in multiple-valued CCD (charge-coupled 
devices) technology [3, 41. Of the possible design 
approaches for MVL-CCD, the costtable approach has 
received the most attention [l-2, 5-6, 8-10]. In addition, 
the costtable approach has been used in the design of 
current-mode CMOS circuits 171 In the costtable 
approach, a given function is realized by selecting func- 
tions from a table and combining them. Each chosen 
function has a cost, as does the combining operation. Cost 
can represent chip area, power dissipation, speed, etc.. 
The goal is to find low cost functions which, when com- 
bined, yield the given function, and to use as few func- 
tions as possible. 

Kerkhoff and Robroek [5] introduce the costtable 

technique for the synthesis of one-variable 4-valued func- 
tions implemented in CCD. The table contains 45 func- 
tions, from which all 256 one-variable functions are syn- 
thesized. The cost of each function is an approximation to 
the chip area occupied by a CCD realization of that func- 
tion. Lee and Butler [6] show a costtable of 24 entries that 
produces realizations as good as or better than those in 
[ 5 ] .  The choice of a costtable is determined by the total 
cost of the realizations produced; for a given costtable 
size, one wants a costtable that yields the lowest total cost. 
Schueller, Tirumalai, and Butler [lo] show minimal and 
near-minimal costtables, and from this, find that the cost- 
table of [6] is not minimal. Also, it is observed that there 
is a point of diminishing retums with respect to costtable 
size. That is, while costtables of larger size produce more 
economical realizations, beyond a certain sue, about 10% 
of the total number of functions to be synthesized, there is 
little benefit to adding more functions to the costtable. 

Schueller and Butler [9] show that the average cost- 
table is significantly less efficient than the optimal one for 
small costtables, but close to the optimal one for large 
costtables. In addition, it is shown that a search for 
minimal costtables cannot exclude certain seemingly use- 
less functions, called composite functions that are more 
efficiently realized by summing other functions. Schueller 
and Butler [lo] show that design by costtable is an NP- 
complete problem. Abd-El-Barr, Hoang, and Vranesic [2] 
show further improvements by exhaustively searching 
through realizations for the one of least cost. 

In this paper, we consider the use of multiplexers in 
the realization of functions, where the primary inputs are 
costtable functions. Specifically, we analyze the relative 
benefits of 1) choosing which function variable to apply to 
the primary inputs, of 2) permuting variable logic values, 
and of both 1 )  and 2). Our analysis is over a set of 5000 
randomly generated two- and three-variable 4-valued 
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functions. We find that the application of techniques l), 
2), and 3) result a reduction of 7 to 34% in the average 
cost. 

II. BACKGROUND AND NOTATION 

Let R = ( 0 , l  , . . . , r-1) be a set of r logic values, 
where r 2 2, and let X = ( x l , x 2 , ,  . . . , xn ) be a set of n 
variables, where xi takes on values from R . A function 
f ( X )  is a mapping f :R" + R .  Let be tlie set of all 
n-variable r-valued functions. In the case of a one- 
variable function f (x it is convenient to use a vector 

' notation, f (x l )=<f(0) , f ( l ) ,  . . .  , f ( r - l )> .  For 
example, in one-variable 4-valued functions, <0,1,2,3> is 
the identity function and <3,2,1,0> is the coinplenient 
function. 

Let cv), the cost of function f, be a mapping 
c : U,,r + R ,  where R is the set of real numbers. For 
example, the cost function c( f  ) used in [5] correlates with 
the chip area occupied by the most compact implementa- 
tion o f f ;  it is called the Area Cost. We consider here two 
cost functions that correlate with the Area Cost, but are 
easily derived from the function specification [ 101. They 
are as follows. 

A. Transition Count - TC (f ) 

Givenf = <ao,a I , u ~ , u ~ > ,  let 

1 if a o < a l = a 2 > a 3  
0 otherwise, and 

IIZ(f) = 

1 if there is a p  , 0 I p  1 2 ,  such that 

0 otherwise. 
ao=u, = . * .  =up > U p + l ,  ZD( f )  = 

"lie transition courit TC (f ) of function f is 

TC (f ) is the number of times the logic values in f change 
from decreasing to increasing and vice versa plus 1 if the 
function is initially decreasing. For example, 
TC (< 1 I22>) = 0 and TC (<203 1 >) = 3. 

B. Total Transition Size - P S  (f ) 

and end transition sizes as follows, 
Given f = <ao,aI,a2,a3>, define beginning, middle, 

lal-aol if Z l = l  or Z12=1 

S b ( f )  = la2-aol if I , = O  and I2=1 ! I a - a ,, I otherwise, 

la2-a11 if I, = I , =  1 

0 otherwise, and 
S m V )  = 

Ia3-a21 if I , =  1 or I , , =  1 

la3-all if Z,=O and 1 1 = 1  

0 otherwise. 

The total transition size ?TS (f ) of a function f is 

ITS (f ) is the sum of the size of each transition (increas- 
ing to decreasing or decreasing to increasing) plus the size 
of the first transition (again) if f is initially decreasing. 
Forexample,ITS(<1122>)= 1 andITS(<2031>)=9. 

The analysis reported is based on the use of a specific 
costtable. The universal costtable is the set of all func- 
tions, For the case of one-valued 4-valued func- 
tions, U l p  consists of 256 functions. In the universal 
costtable, synthesis is simply a table lookup. In analyzing 
the effectiveness of 1) choosing which function variable to 
apply to tlie primary multiplexer inputs, of 2) permuting 
variable logic values, and of both I )  and 2), we use the 
universal costtable. 

111. ANALYSIS OF MINIMIZATION TECHNIQUES 

The realization of functions on two or more variables 
can be accomplished by multiplexers. Fig. 1 below shows 
the realization of a two-variable function as four one- 
variable functions and a multiplexer. The four functions 

X 

Figure 1. Realization of a function by multiplexers. 
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occur as rows in the map each depending on x .  y is used 
to select which function is in effect. The total cost is the 
cost of the four functions plus the multiplexer cost. Using 
transition count, the four functions cost 3 + 3 + 3 + 2 = 14. 

The variable applied to the one-variable functions is 
the priiizary variable. In this example, it is x . If y is the 
primary variable, the columns represent the one-variable 
functions that must be realized, and x is used to select 
which function is in effect. For this case, the four func- 
tions cost 1 + 1 + 1 + 0 = 3. Thus, there is a significant 
reduction when y is the primary variable. 

Another way to reduce realization cost is by a per- 
nzurer function to permute the variable value. Fig. 2 
shows how the addition of a permuter function reduces the 
total cost. In this example, the total cost of the realization 
is the sum of the costs of the four functions, the multi- 
plexer, and the permuter function. A reduction in total 

x 4  3120 1 

4-/ ; 

Figure 2. Using permuter functions to reduce the cost. 

cost is realized only if the reduction in total cost of the 
four one-variable functions exceeds the cost of the addi- 
tional permuter function. Here, there is a reduction; the 
cost of the four functions and the permuter function is 
0 + 0 + 0 + 2  + 3=5. 

To analyze the relative benefit of choosing primary 
variables and permuting variable values, 5000 random 
functions were generated and their costs computed. We 
take as the cost the sum of the costs of the component 
one-variable functions plus the cost of the pemiuter func- 
tion if used. The cost of the multiplexer is not included; it 
is assumed to be the same for all realizations. Depending 
on the technology used and the specific design, a savings 
in the multiplexer cost may be achieved with certain 
arrangements of functions. For example, if two inputs to 
the multiplexer represent the same function, there can be 
one less input and multiplexer cost can be lower. Simi- 
larly, in CCD, if not all multiplexer inputs must handle a 
logic 3, the multiplexer cost can be lower than for the case 
where all inputs must handle a logic 3. Since our goal is 
to analyze a logic design technique independent of the 
technology used (and thus the multiplexer design), we 

have not counted multiplexer cost. For each function f, 
the following costs are computed 

1. The cost o f f  (the sum of the individual one- 
variable functions that compose f). 

2. The least cost obtained from all ways to choose 
the primary variable off . 

3. The least cost obtained from all (24) ways to 
permute the primary variable values off .  

4. The least cost obtained from all ways to choose 
the primary variable off and from all (24) ways 
to permute the value of the primary variable. 

The analysis was performed on three sets of 5000 
functions, one-, two-, and three-variable functions. See 
Figs. 3, 4, and 5. For one-variable functions, only the 
statistics of the costs in 1) were analyzed, since 2), 3), and 
4) offer no advantage. This served to evaluate the random 
number generator used. The average cost and distribution 
of costs are known and so a comparison could be made. 
For functions on more variables, however, the average 
costs and distributions are i t a  known, and the analysis 
provides previously unknown results. For two- and 
three-variable functions, 5000 functions is a small fraction 
of the total set. However, different sets of random func- 
tions produce nearly the same distributions, indicating a 
sufficiently large sample set size. Two cost functions are 
used 1) transition count and 2) total transition size. For 
the latter case, we take as the cost of the identity function, 
0. That is, TTS(<O,1,2,3>) = 0. This represents the view 
that the cost off  ( x )  = x  is not 3 as obtained by a direct 
calculation of total transition size, but 0, it being the direct 
application of the variable. The analysis accommodates 
the savings obtained in functions with duplicate one- 
variable functions. For example, if a two-variable func- 
tion consists of four functions, two of which are the same, 
the duplicate function counts once, not twice. Here, the 
function output must drive more than one multiplexer 
input. Depending on the technology, a fanout unit may be 
required. We neglect the cost of this, because it is tech- 
nology dependent. Figs. 3, 4, and 5 show the results for 
one-, two-, and three-variable functions. In all figures, the 
vertical axis shows the number of samples and the hor-. 
izontal axis represents the cost. Fig. 3 shows the number 
of one-variable functions generated for each of the costs 
shown along the horizontal axis. The transition count is 
shown on the left side, and the total transition size is 
shown on the right side for the same set of 5000 random 
functions. Also shown in Fig. 3 (as dotted lines) is the 
distribution if the process was perfectly random, each 
function as likely as any other function. T ~ I S  was derived 
by calculating the number of functions with various values 
of the transition count and total transition size and prorat- 
ing to a sample set of 5000. As can be seen, there is a 
close correlation with the distribution obtained from our 
sample set of 5000 functions. This is evidence that there 
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Average TC 
# of samples - 5wO element sample 

4 -  .----- Truly random sample s e t  

Average TTS 
5000 element sample set 

----_ Truly random sample s e t  
# of samples 

500 i l l 1 1  
I I I I I  

4 1  6 8 10 l Z m  

Figure 3. Statistics for one-variable 4-valued functions. 

Transition Count 
# of s m p l e a  

4 

Function 
Without 

Optimization 

Choosing 
Primary 
Variable 

Permuting 
Variable 

Value 

Choosing Primary 
Variable and 

Permuting Its Value 

Total Transition Size 

# of samples 

500 I ,  
S 

8 

# of samples 

i 
500 

5 10 151 20 25 30 35 TTS 

# of samples 

t 
500 

TTS 
I 

# of samples 

4 
500 

5 10 19 20 25 30 35 TTs 

Figure 4. Statistics for two-variable 4-valued functions. 

is little bias in the sample set. 

A vertical dotted line extending above and below the 
horizontal axis in each figure shows the average cost. 
Figs. 4 and 5 shows the distribution of costs for 2- and 3- 
variable functions, respectively. The uppermost plots in 
the figure show the distribution of costs for randomly gen- 
erated functions without optimization for the transition 
count (left side) and the total transition size (right side). 
The results of choosing a primary variable in all ways and 

picking the least cost realization is shown in the plots just 
below. For the transition count, there is about a 15% 
reduction in average cost LI both the two- and three- 
variable cases (cf. Table I). For the total transition count, 
the reduction for both cases is about 10%. The third pair 
of plots from the top shows the result of permuting the 
primary variable values only. The reduction for the transi- 
tion count is 25% and 18% for the case of two- and three- 
variable functions, respectively. For the total transi- 

289 



Transition Count 

Transition 
count 

I% of Fwo 

5.881100% 

Total Transition Size 
I of .up lc .  

Total 
Transition 

Size/% of ?WO 

18.68/1OO% 

Function 
Without 

Optimization 

4.93184% 

Choosing 
Primary 
Variable 

16.49188% 

Permuting 
Variable 

Value 

Choosing Primary 
Vnriahle and 

Permuting Its Value 

various 
Optimizations 

Function 
Without 

Optimization (FwO ) 
choosing 

primary 
Variable 

Permuting 
Variable 

Value 

Choosing Primary 
Variable and 

Permuting its Value 

Figure 5. Statistics for three-variable functions. 

Two-Variable 
Functions 

4.40/75% 17.30193% 

3.89166% 15.81185% 

Three-Variable 
Functions 

Transition 
count 

1% of Fwo 

22.951100% 

20.05/87% 

18.82/82% 

11.02/74% 

Total 
Transition 

Size/% OfFWO 

72.55/100% 

65.71191 % 

66.74192% 

61.88185% 

Table 1. Average Cost Over 5000 Functions 
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tion size, permuting the primary variable value yields a 
reduction of 7% and 8%, respectively. 

The lowest plots show the distribution of average 
costs obtained by choosing the primary variable and per- 
muting its value choosing the least cost realization. For 
the transition count, the reduction in average cost is 34% 
and 26% for two- and three-variable functions, respec- 
tively. For the total transition count, the reduction is 15% 
in both cases. 

Table I shows the average costs of functions without 
optimization (FWO ) together with the average costs 
obtained by optimizations l), 2), and 3) discussed above. 
In addition, after each average cost is a percentage that 
represents the percentage the corresponding value to the 
average cost associated with FWO . 

IV. COMPLEXITY OF THE SEARCH 

The search for 1) a variable to apply to the select input 
of the multiplexer is straightforward. Given 11 variables, 
there are 11 ways to choose which to apply to the primary 
input. Having made this choice, there are then r" - I  one- 
variable functions whose cost must be looked up, for a 
total of I I  I." - operations. Thus, for a fixed r , the time 
coniylexity of 1) is exponential in 1 2 .  

The complexity of the search for 2) a permutation of 
logic values that produces the lowest cost realization can 
be characterized as follows. The number of permutations 
of the primary variable is r !, while the number of table 
look-up operations of costs of the resulting functions is 

. There is another look-up operation for the cost of 
the permuter function, and so the time complexity for this 
case is I' ! (r" - + l), which is also exponential in 1 1 .  

The complexity of 1) selecting the primary variable 
and of 2) permuting its logic value is computed as fol- 
lows. There are I I  ways to choose the variable and 
I' ! ( I ."  - I + 1) ways to permute the logic values and per- 
form a table look-up of the costs of the component func- 
tions, for a total of I I  r ! (rl' + 1) operations. The 
exponential time complexity of all three of these searches 
was seen clearly in our program; the time to analyze the 
case for 11 = 3 was significantly larger than for IZ = 2. 

- 1 

V. CONCLUDING REMARKS 

Our initial expectation was that the permutation of 
variable values would result in larger improvements as the 
number of variables increased because the cost of the per- 
muter function would be a smaller percentage of the total 
cost. However, this is not the case, as is seen by compar- 
ing the percentages for two- and to the percentages for 
three-variable functions, in Table I. It seems that the 
overriding factor is the increase in the number of one- 
variable functions, which offers fewer arrangements of 

advantageous logic value permutations. For example, 
when there is a Iarge number of one-variable functions, 
any one permutation of variable values is as likely to yield 
the same cost as any other permutation. 
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